Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons.
نویسندگان
چکیده
Molecular cloning studies have revealed the existence of a large family of voltage-gated K+ channel genes expressed in mammalian brain. This molecular diversity underlies the vast repertoire of neuronal K+ channels that regulate action potential conduction and neurotransmitter release and that are essential to the control of neuronal excitability. However, the specific contribution of individual K+ channel gene products to these neuronal K+ currents is poorly understood. We have shown previously, using an antibody, "KC, " specific for the Kv2.1 K+ channel alpha-subunit, the high-level expression of Kv2.1 protein in hippocampal neurons in situ and in culture. Here we show that KC is a potent blocker of K+ currents expressed in cells transfected with the Kv2.1 cDNA, but not of currents expressed in cells transfected with other highly related K+ channel alpha-subunit cDNAs. KC also blocks the majority of the slowly inactivating outward current in cultured hippocampal neurons, although antibodies to two other K+ channel alpha-subunits known to be expressed in these cells did not exhibit blocking effects. In all cases the blocking effects of KC were eliminated by previous incubation with a recombinant fusion protein containing the KC antigenic sequence. Together these studies show that Kv2.1, which is expressed at high levels in most mammalian central neurons, is a major contributor to the delayed rectifier K+ current in hippocampal neurons and that the KC antibody is a powerful tool for the elucidation of the role of the Kv2.1 K+ channel in regulating neuronal excitability.
منابع مشابه
Comparison of the endogenous IK currents in rat hippocampal neurons and cloned Kv2.1 channels in CHO cells.
The Kv2.1 potassium channel is a principal component of the delayed rectifier I(K) current in the pyramidal neurons of cortex and hippocampus. We used whole-cell patch-clamp recording techniques to systemically compare the electrophysiological properties between the native neuronal I(K) current of cultured rat hippocampal neurons and the cloned Kv2.1 channel currents in the CHO cells. The slope...
متن کاملCalcium- and metabolic state-dependent modulation of the voltage-dependent Kv2.1 channel regulates neuronal excitability in response to ischemia.
Ischemic stroke is often accompanied by neuronal hyperexcitability (i.e., seizures), which aggravates brain damage. Therefore, suppressing stroke-induced hyperexcitability and associated excitoxicity is a major focus of treatment for ischemic insults. Both ATP-dependent and Ca2+-activated K+ channels have been implicated in protective mechanisms to suppress ischemia-induced hyperexcitability. H...
متن کاملExistence of a delayed rectifier K+ current in the membrane of human embryonic stem cel
Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...
متن کاملDifferential spatiotemporal expression of K+ channel polypeptides in rat hippocampal neurons developing in situ and in vitro.
Hippocampal neurons are highly plastic in their excitable properties, both during development and in the adult brain. As voltage-sensitive K+ channels are major determinants of membrane excitability, one mechanism for generating plasticity is through regulation of K+ channel activity. To gain insights into the regulation of K+ channels in the hippocampus, we have analyzed the spatiotemporal exp...
متن کاملDynamic regulation of the voltage-gated Kv2.1 potassium channel by multisite phosphorylation.
Voltage-gated K(+) channels are key regulators of neuronal excitability. The Kv2.1 voltage-gated K(+) channel is the major delayed rectifier K(+) channel expressed in most central neurons, where it exists as a highly phosphorylated protein. Kv2.1 plays a critical role in homoeostatic regulation of intrinsic neuronal excitability through its activity- and calcineurin-dependent dephosphorylation....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 5 شماره
صفحات -
تاریخ انتشار 1999